ONE-PAGE PLACE ASSESSMENT: GROVELAND, CALIFORNIA LOCATED IN THE UPPER TUOLUMNE SUBWATERSHED WITHIN THE CALIFORNIA WATERSHED CLIMATE ₽1 AVERAGE HIGH & LOW TEMPERATURES¹ 1948-2012 JAN APR **ANNUAL FEB** MAR MAY JUN JUL AUG **SEP** OCT NOV DEC 52.1 53.9 58.7 62.6 73.6 82.6 91.0 89.9 84.7 72.5 58.8 51.4 69.3 F HIGH 30.1 31.2 34.0 36.5 43.8 49.6 55.9 54.0 49.3 42.1 33.8 30.2 40.9 F LOW 12.2 14.8 17.0 32.2 29.3 22.5 11.2 23.1 28.1 32.8 14.9 10.8 20.7 C HIGH 2.5 C LOW -1.1 -0.41.1 6.6 9.8 13.3 12.2 9.6 5.6 1.0 -1.0 4.9 105° F January 13, 2007 40.6° C July 23, 2006 9° F -12.8° C RECORD HIGH¹ RECORD LOW1 SUN ₽2 **MAR 21 JUN 21 SEP 21 DEC 21** O° 31°N 0° 29°S DEGREES N or S of DUE EAST THE SUN RISES² LATITUDE 0° 31°N 0° 29°S DEGREES N or S of DUE WEST THE SUN SETS² 52° 52° 29° 76° SOLAR-NOON ALTITUDE ANGLE (ABOVE HORIZON)^{a,2,3} **ELEVATION** 2,816 FT 1:1.82 SOLAR-NOON WINTER-SOLSTICE SHADOW RATIO^b ...AND AZIMUTH^c 859 m 9AM & 3PM WINTER-SOLSTICE SHADOW RATIOb,2 1:3.57 42° ...AND AZIMUTH^{c,2}

WIND			P3 MAX SPEED⁴ 62 100										
PREVAILING WIND DIRECTION (FROM WHERE) ⁴ & AVERAGE SPEED ⁴ MPH km/h													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
	N	NE	NE	NE	NE	NE	NE	NE	N	N	N	N	ANNUAL
MPH	3	5	5	5	6	7	6	6	5	3	3	3	4.8
km/h	5	8	8	8	10	11	10	10	8	5	5	5	7.6
V	WATER □4 AVERAGE RAINFALL (GAIN) ⁵ 1955–2005									05			
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL
INCHES	7.34	6.72	5.35	3.31	1.21	0.37	0.06	0.13	0.59	1.64	4.62	5.92	37.26
mm	186.4	170.7	135.9	84.1	30.7	9.4	1.5	3.3	15.0	41.7	117.3	150.4	946.4
AVERAGE PAN EVAPORATION (POTENTIAL LOSS) ^{d,6} 1931–2005													
INCHES	0.00	0.00	0.00	3.84	5.31	7.34	8.78	7.86	5.85	3.23	1.74	0.00	43.95
mm	0.0	0.0	0.0	97.5	134.9	186.4	223.0	199.6	148.6	82.0	44.2	0.0	1,116.3
WETTEST YEAR'S RAIN ⁵ 67.0 INCHES 1,701 mm 1982 DRIEST YEAR'S RAIN ⁵ 12.3 INCHES 312 mm 1976													
LONGEST PERIOD WITH NO MEASURABLE PRECIPITATION7 RAINFALL INCOME® 28,336 GPCD													
165 DAYS: June 17 – November 25, 1995													
AREA ^{f8} 9.6 SQ MILES POPULATION ^{f,9} 601 UTILITY-WATER USE ^{g,10,11} 138 GPCD 25 km ² 130 Ipcd													
HISTORICAL 0 FT 0.0 m DEPTH TO GROUNDWATER ^{h,12} 0 FT 0.0 m CURRENT													
	CURRE	NT GR	OUNDV	VATER E	XTRACT	TION	NATI	JRAL GI	ROUND	NATER	RECHAI	RGE ^{i,13}	
	- T- D					•	•						

TOTEM SPECIES PLANT: Hoover's Spurge (Chamaesyce hooveri) REPTILE: Giant Garter Snake (Thamnophis gigas)

FISH: Central Valley Steelhead (Oncorhynchus mykiss) CRUSTACEAN: Vernal Pool Tadpole Shrimp (Lepidurus packardi) BIRD:

AMPHIBIAN: California Tiger Salamander (Ambystoma californiense)¹⁶ MEGAFAUNA: MAMMAL:

WATERGY

₽5

AVG CA HOMES THAT COULD BE POWERED W/ ENERGY USED TO RUN GROVELAND'S WATER PLANTS^{1,14,15}

790

FOR MORE INFORMATION & HOW TO APPLY IT

- □ 1. For more CLIMATE information, see the introduction, chapters 1, 2, & 4, and appendix 5 of *Rainwater Harvesting for Drylands and Beyond (RWHDB), Volume 1, 2nd Edition*
- P2. For more SUN information, see chapters 2 & 4 and appendices 5 & 7
- **3.** For more WIND information, see chapters 2 & 4 and appendices 5 & 9
- P4. For more WATER information, see the introduction, chapters 1-4, and appendices 1-5
- P5. For more WATERGY information, see chapters 2 & 4 and appendix 9
- **6.** For more TOTEM SPECIES information: the ethics, principles, and strategies throughout *RWHDB* help us shift from a negative to a positive impact on these species and their habitats and ecosystems, on which our quality of life also depends.

GROVELAND PLACE-ASSESSMENT NOTES

- a. Altitude angle (a.k.a., elevation angle) refers to the number of degrees the sun is located above the horizon at a given time and date.
- **b.** The solar-noon winter-solstice shadow ratio is the object's height: length of object's shadow cast on December 21 at noon (the longest noontime shadow of the year). The ratio is 1: x, where $x = 1 \div tangent$ (90 (latitude + 23.44)).
- c. Azimuth is the angle formed between a reference direction (here, due south) to the point on the horizon directly below a given object. Solar noon is the time on any day when the sun's azimuth is 0°. The 9 am & 3 pm winter-solstice azimuth indicates the sun's deviation, in degrees, east/west of due south at those times (-/+ 3 hours from solar noon) on December 21.
- d. An evaporation pan holds water whose depth is measured daily as water evaporates. These data allow us to determine evaporation rates at a given location. Compare average rainfall (water gain) to potential water loss via evaporation by looking up pan-evaporation rates for your area. If pan-evaporation rates exceed rainfall rates, you are in a dryland environment, where evaporation-reducing strategies such as mulch, windbreaks, shading, and covered water storage are very important.
- e. Calculated in situ w/ average rainfall, area, & population
- **f.** City proper
- g. GPCD calculated by dividing 466,000 gallons of water per day for service area in year 2000 (ref. 10) by 3,388 residents in combined service-area towns in year 2000 (ref. 11).

h.

- i. Groundwater pumping can be reduced with the on-site harvest of free on-site waters as advocated in Brad's books. In addition, energy conservation and renewable on-site power production can reduce groundwater pumping associated with thermoelectric energy production. See appendix 9 of RWHDB, Vol. 1, 2nd ed., to compare costs of our water and energy options.
- j. In calendar year 2012, Groveland's two water treatment plants used 5,562 MWh of energy for all operations, including energy-intense UV and other forms of water treatment, analyzers, electricity, and all other uses (ref. 14). To convert 5,562 MWh to kWh, multiply it by 1,000 kWh/MWh to get 5,562,000 kWh. The average California household uses 587 kWh/month (ref. or 7,044 kWh/household/year. Divide total water-plant kWh/year by kWh/household/year to get 790 households.

CREDITS: Brad Lancaster, Resource concept, content oversight | Megan Hartman, Research, Resource creation

GROVELAND PLACE-ASSESSMENT REFERENCES

- 1. Groveland 2 station (#043669), wrcc.dri.edu, accessed 6/21/2013. Station metadata is poor, but best available for Groveland's temperature data, and used as per advice of Jim Ashby, Service Climatologist, WRCC, via phone 6/8/2011.
- 2. Rainwater Harvesting for Drylands & Beyond, Vol 1, or esrl.noaa.gov/gmd/grad/solcalc, accessed 6/21/2013
- 3. RWHDB Vol 1, or Mar 21 = 90-latitude, Jun 21 = 90-(latitude-23.44), Sep 21 = 90-latitude, Dec 21 = 90-(latitude+23.44)
- 4. www.myforecast.com/bin/climate.m?city=516084, accessed 6/21/2013
- **5.** Groveland RS station (#043672) used for precipitation due to station metadata for this element being much better than Groveland 2 station's. Accessed at wrcc.dri.edu on 6/21/2013.
- 6. These data are for Hetch Hetchy, the closest and most-similar location with pan-evaporation data. Hetch Hetchy is at a higher elevation (3,783 ft), but with very similar average annual high and low temperatures (66.6°F and 40.5°F, respectively), and very similar annual precipitation (35.5"), www.wrcc.dri.edu/htmlfiles/westevap.final.html#CALIFORNIA, accessed 6/21/2013.
- 7. Jim Ashby, Service Climatologist, WRCC, via phone 6/8/2011
- 8. en.wikipedia.org/wiki/Groveland,_California, accessed 6/21/2013
- 9. www.census.gov/2010census/popmap/ipmtext.php?fl=06:0631372, accessed 6/21/2013
- 10. www.gcsd.org/reports/water_master_plan.pdf, p. 10, accessed 6/21/2013
- 11. en.wikipedia.org/wiki/Groveland-Big_Oak_Flat,_California, accessed 6/21/2013
- 12.
- 13.
- 14. Aaron Randi, Chief Plant Operator, Groveland Community Services District, via phone, 6/21/2013
- 15. www.eia.gov/cneaf/electricity/esr/table5.html, accessed 6/21/2013
- **16.** www.fws.gov/sacramento/es_species/lists/es_species_lists.cfm, ecos.fws.gov/speciesProfile/profile/speciesProfile.action?s, and en.wikipedia.org