Professionals typically use transits or surveyor’s levels to measure slope and define how they want to shape the land. These tools work well, but they are expensive and require training to use. Here are two effective and inexpensive alternatives you can make—a “bunyip” water level and an A-frame level.

THE “BUNYIP” WATER LEVEL

The “bunyip” (fig. A2.1), as this water level is called in Australia, is a simple tool that enables you to find a land “contour” (a level line on the landscape), determine elevation differences between two points, and determine the slope of the land.

You can use this tool to mark the locations for contour berms, slopes of diversion swales, end points of boomerang berms, depths of basins, and appropriate locations for overflow routes.

A bunyip consists of a long clear vinyl tube, with each end attached to a tall stake that is marked in inches or centimeters. When the two stakes stand vertically, the tube becomes “U” shaped. Water is then carefully poured into the tube so no air bubbles are entrained in the water. The bunyip works on the principle that still, standing water is level across its entire surface, as you would find on a calm lake. A bunyip is basically a lake in a tube.

The tube is filled with enough water so the surface of the water reaches about halfway up each vertically held stake. If the stakes are standing right next to each other on level ground, the water level will be the same in both ends of the tube, and the measurement reading on each stake will be the same. If one stake is raised onto a small dirt mound while the other stays where it was, the water level will stay straight across, but the measurement readings on the stakes will be different, reflecting the elevation difference of the land.
the stakes are standing on. It takes two people to use a bunyip water level—one to hold each stake. Bunyips are easy to make using the materials and instructions below.

WHAT YOU NEED TO MAKE A BUNYIP

• Two 5- to 6-foot (1.5- to 1.8-m) tall, straight stakes
• 30 feet (9.1m) or more of 5/8-inch (16-mm) diameter clear vinyl tubing, available in the plumbing section of most hardware stores
• 3 feet (90 cm) of wire or string to bind the tubing to the stakes
• Yard (meter) stick or tape measure
• Permanent ink marker
• 2 to 3 gallons (9 liters) of water
• Funnel to pour water into the tubing
 • Optional: 2 corks and 2 strings. Corks are used to plug the tube ends when moving the water level around, then removed during use. Wine bottle corks can be whittled down to fit the tubing. Tie one end of a string to the top of the bunyip stake and the other end to a cork so you don’t lose the corks.

HOW YOU MAKE A BUNYIP

Lay the stakes beside one another on the ground with the bottom ends even. Measure 5 feet (1.5 m) up from the bottom of each stake and mark this point. These marks should be level with one another since the bottom ends of the stakes are even. Starting from the upper mark of each stake, use the measuring tape or yard stick and permanent marker to mark each inch (or centimeter) going down for 30 inches (or 75 cm). Check the accuracy of the marks by standing the stakes next to each other on level ground to confirm they line up. Starting with zero at the top, number the marks from top to bottom on each stake so the numbers also correspond.

Bind the tubing near the top of each stake using wire or string. Lash it tight enough to hold the tubing in place, but not so tight that it significantly pinches the tubing. Pull the tubing straight down along the stake and lash it in the middle, then near the bottom of the stake.

Fill the tubes with water in one of two ways:

Method 1: Pour the water in. With both stakes in an upright position, carefully pour water into one end of the tube until water overflows the tube. Any air bubbles that become entrained in the tubing will prevent accurate water level measurements. Remove air bubbles from the tube (see box A2.1 for instructions), and add more water until the desired water level is attained.

Method 2: Siphon the water in. Lay one stake on the ground. Set the other stake upright against a table that has a bucket of water standing on it. Release the upper tubing from the upright stake and stick the end of the tubing in the bucket of water. Wash the end of the tubing of the stake laying on the ground, then suck on the end of the tubing to initiate water siphoning. Air bubbles typically do not get entrained in siphoned water running from the bucket into the tubing.

With the air bubbles removed, hold the stakes upright next to one another on level ground. Check that the level of water is about halfway up the stakes. Drain or add water as needed to get water to the right level. Water should move freely up and down in the
tubing when you move the stakes. If water does not move, check the tubing for kinks, remove the kinks, and verify that water moves correctly. Once the water becomes calm after moving the tubes, check that the water level lines up in both tubes, and that the measurement reading is the same on both stakes. If the water levels are not at the same height when the stakes are standing next to each other on level ground, check again for air bubbles or a kink in the tubing. If the measurement reading is not the same, check for mis-marked stakes.

Now your bunyip is ready to use. While carrying it around, use the corks or your thumbs to plug the tubing to keep water from sloshing too much in the tubing. Remove corks or thumbs when you are reading water level measurements. During a long project, it’s a good idea to periodically set stakes on level ground next to each other to verify no new bubbles or kinks have formed.

USING YOUR BUNYIP—TWO HYPOTHETICAL EXAMPLES

Marking a level line for a contour berm

Al and Bonnie want to mark a level contour line on their land where they plan to dig a contour berm later that day. They get out their bunyip water level and Bonnie holds the two stakes upright as Al fills the tubing with water and gets rid of air bubbles. The water is about halfway up their stakes and is level, so they are ready to start.

To refamiliarize themselves with the water level, Bonnie holds one of the stakes a few inches higher than the other. When the water stops moving, the water in the higher stake reads “19” while the lower stake reads “11” (fig. A2.2), so they are reminded that the stake that reads the higher number is also higher in the landscape than the other stake.

As they walk to where they want to begin measuring the contour line, they each hold a stake with their thumb over the open end of the tube to keep water from spilling out. Bonnie sets the bottom end of her stake down where they want to begin the berm. Al walks 5 to 20 feet (1.5 m to 6 m) along what he thinks is the contour line (20 feet if the land is relatively flat, closer if the land is more undulating). Al puts his stake down in a spot he feels is on the same contour line as Bonnie’s stake. Standing in these positions, they each gently tap the top of their end of the tube with their thumb to stop the water sloshing around within the tubing. When the water is still, and they’ve removed their thumbs from the end of the tubing, they tell each other what water level measurement they have. Bonnie reads 13 while Al reads 17.

“I have the higher number, so my stake is higher than yours,” says Al. “So I’ll move my stake downslope
a bit. You stay where you are since you’re in the spot where we want to begin the berm.” After moving his stake several times, Al and Bonnie each read 15 on their stakes, so they are now at the same elevation. They scuff a line in the dirt connecting Bonnie’s point to Al’s. With that done, Al keeps his stake in place and puts his thumb on the top of the tubing. Bonnie plugs her end of the tubing and walks her stake beyond Al (“leapfrogging him”) to a point she thinks is level with his stake (fig. A2.5).

As Al and Bonnie find a series of points on the same land contour, they continue to connect the dots by scuffing the contour line into the dirt. They could have marked the contour line with wooden stakes or other markers, but since they planned to dig a berm ‘n basin along the contour line right after lunch, scuffing is sufficient. They keep going until they reach the full length chosen for the contour berm. If they had encountered a landform that presented a natural barrier, they would have stopped there instead.

With the contour line marked, they prop the bunyip water level against a tree to keep water from running out of the tubing, call some friends, and dig a contour berm along the line they just marked (see chapter 2 on Berm n’ Basins for more information about construction). By four o’clock that afternoon, the contour berm is complete.

Using a bunyip to determine a difference in elevation and measure slope

In the middle of a record-breaking drought, friends of Bonnie and Al decide to make use of the
rain that does eventually fall by putting in a water-
harvesting basin in front of their house. To make sure
they don't dig into and damage underground utility
lines they call their free local utility-marking service (this is called Blue Stake where I live in Tucson) to
have buried lines marked between the public right-
of-way and the meters. Then they hire a private util-
ity-marking service to continue marking buried lines
from the utility meters to the house. Once all utility
lines are marked, they ask Bonnie and Al to bring
their bunyip over and help them figure out the direc-
tion water naturally drains around their new home.

Bonnie and Al look at the relatively flat lot and try
to eyeball the way water would flow, then get out their
bunyip water level to see if they are right. “OK,” says
Bonnie, “I’m putting my stake by the house.” Al
places his stake 10 feet (3 m) away from the house at a
point he thinks is directly downhill from Bonnie.
When the water stops moving within the tubing, Al
and Bonnie tell each other the water level readings
they have (fig. A2.6).

“I’ve got 14,” says Bonnie. “My stake reads 16,”
says Al, “and with our bunyip that means you are a
full two inches lower than me, so water will drain
toward this house…which is bad news!”

Al, Bonnie, and their friends decide to dig a shal-
low basin about 15 feet (4.5 m) from the house to
intercept rainwater, and to move the soil from the
basin to the house foundation to deflect rainwater
away from the house. They dig out a level-bottomed
basin 6 feet (1.8 m) wide and 8 feet (2.4 m) long, and
put most of the fill dirt next to the house, making
sure the dirt is at least 6 inches (15 cm) below the top
of the foundation’s stem wall (as recommended by
local building codes to keep termites and/or soil mois-
ture from entering the home). They rake the area
between the newly dug basin and the house so the
grade slopes away from the house and into the basin.
Then they use the bunyip water level to check their
work. Bonnie again stands by the house and Al places
his stake about halfway between the house and the
basin on the new slope they created.

“My stake reads 16,” announces Bonnie.
“And I read 14, so we did reverse the slope and
water will now drain away from the house,” cheers Al.
“Bonnie, stay up against the house while I move my
stake to the bottom of the basin to see how much
deeper it is than the soil by the house.”

Al moves to the bottom of the basin and reads 6
on his stake (fig. A2.7).

“I’ve got 24” exclaims Bonnie. “Subtract your 6
from my 24 and that tells me you are 18 inches lower
than me. We did a good bit of digging!”

“This basin will catch a lot of rainwater! Let’s
make sure when it fills up, any surplus water will over-
flow away from the house,” says Al.
They take land surface readings all around the edge of the basin using their bunyip water level. They learn from the readings that if water flows out the lowest point around the edge of the basin, it will drain water toward the neighbor’s house. To change this, they pick up the shovels and alter the dirt level of the basin’s rim slightly so the lowest point on the basin’s edge will now direct overflow into another basin on site.

Checking their work with the bunyip as they go along, they dig several more basins, this time located in the public right-of-way (public land located between their property line and the street). These basins will harvest even more rainwater and will receive overflow from the basin they dug in front of the house. So this series of basins will direct overflow water all the way from the house to the street. The edges, bottoms, and general slope of the basins are checked using the bunyip one last time.

The basins were constructed so that while the overflow spillways that move water from one basin to the next are at the same elevation, that elevation is well below the soil level abutting the house. This way the house will stay high and dry. The elevations of the level bottoms of the basins varied, but were all lower than their respective overflow spillways, so some water will be retained in each basin. The depth between a basin’s overflow spillway and the bottom of the basin determines the storage capacity of the basin.

Bonnie and Al’s friends are delighted with their new water-harvesting basins. After taking a break, they plant the basins. Hardy native trees go in along the street in the public right-of-way basins. The basin in front of the house is planted with a drylands-adapted peach tree to provide fruit for future pies. Along with it, they plant a wolfberry, a chuparosa, and native flowers that produce native foods and medicinals and attract hummingbirds. This basin will receive direct rainfall, harvested runoff, and greywater from the home.

Bonnie and Al’s friends are so inspired, a week later they dig several more basins near their house. A vegetable garden goes into the basin south of the house where it will receive winter sunlight. A native mesquite tree is planted in a basin west of the house to fix nitrogen in the soil and screen the vegetable garden from harsh summer-afternoon sun. Once all the basins are dug, planted, and well-mulched, Bonnie and Al’s friends dance together to entice the rain (fig. A2.8).

For more information see chapter 5 on infiltration basins, chapter 11 on vegetation, and chapter 4 in volume 1 on integrated design.
THE A-FRAME LEVEL

The A-frame level (fig. A2.9) is even simpler to construct than the bunyip water level. No tubing or water is needed, and you can use it all by yourself. An A-frame level can be used to find a contour line on the landscape, but unlike the bunyip, you cannot measure the elevation differences between two points at different levels, nor can you measure the slope of the land. It does come in very handy for marking the line on which to construct contour berms and for checking to see if the two ends of a boomerang berm are level.

The A-frame level is made of three poles or sticks tied or fastened together to form a capital “A” (thus the name). A weighted string is hung from the top of the “A” like a plumb bob. When both “feet” of the “A” are level with one another the weighted string will hang alongside a center line marked on the horizontal stick of the A-frame. If the two feet are not level with one another, the string will hang to one side or the other of the center mark, depending on which foot of the A-frame is lower.

WHAT YOU NEED TO MAKE AN A-FRAME LEVEL

- 3 straight poles, pipes, sticks, or something similar. They must be long enough so that the top of the “A” is about as tall as you are and the feet of the “A” are at least 3 feet (0.9 m) apart. The feet can be closer together, but the narrower the “A” the longer it will take to mark a level contour line on a slope.

- Rope, cordage, nails, or screws to securely fasten the poles, pipes or sticks together at 3 points

- A piece of string about 4 feet (1.2 m) long and a weight of some sort (stone, horseshoe, etc.) to tie to one end of the string

- Marker, knife, or paint

HOW YOU MAKE AN A-FRAME LEVEL

Lay your three stakes, poles, or sticks on the ground in the form of a capital “A.” Tie or screw the three stakes together in the three points where they touch. This is a great opportunity to live out your Boy Scout or Girl Scout knot-tying fantasies with clove hitches and lashing! Make sure all bindings are tight so
that your A-frame level won’t come apart and the joints don’t loosen, as that would result in inaccurate readings.

Once bound, set the A-frame upright and tie one end of the string to the top of the “A.” Tie the weight to the other end of the string. The heavier the weight, the less likely it will get blown around on a windy day. The weighted end of the string should hang below the cross stake (the stake parallel with the ground). To make the center mark on the cross stake, place the feet of the upright A-frame on a section of unlevel ground, so one foot of the A-frame is a little higher than the other. When the weighted string comes to rest in a spot alongside the cross stake of the A-frame, lightly mark that spot (fig. A2.10).

Now, mark the two points where the A-frame is standing on the ground. Lift the A-frame, rotate it, then set it back down with the “feet” switching places. When the weighted string again comes to rest alongside the cross stake, lightly mark that spot (fig. A2.11).

Now you have two marked spots on the cross stake. Permanently mark the midpoint between these two spots on the cross stake (fig A2.12).

From now on when the weighted string comes to rest alongside this permanent mark you will know the two feet of the A-frame are standing on two points level with one another.
Your A-frame will read accurately as long as it does not loosen up and change shape. You can quickly test it by going through the steps just described. If the heavy mark is still at the midpoint when you test it on level ground, then your A-frame will read correctly. If the mark is not at the midpoint, retighten the joints and make a new midpoint mark.

HOW TO USE AN A-FRAME LEVEL

Go to a spot where you want to mark a level contour line across the landscape. Place the A-frame upright with its “feet” on what you think is level ground, and see where the weighted string comes to rest along the cross bar. If the string comes to rest alongside the permanent mark, the feet of the A-frame are on a level line. Now mark a straight line in the dirt from one foot of the A-frame to the other. Rotate the A-frame 180° with one foot left standing on the end of the line you just marked and the other foot moved to a new spot you think will be level with the first (fig. A2.13). If the weighted string comes to rest to either side of the permanent mark, the A-frame is not on a level line. Move the newly placed foot slightly up or down the slope until it rests on a spot that is level with the other foot. Again, mark this straight line in the dirt. Continue finding and marking the level contour line by rotating and stepping the A-frame across the landscape. Repeat this process until you have marked the contour line length needed for your project.

AN A-FRAME VARIATION FOR WINDY SITES

On very windy days the weighted string of the A-frame will blow around. A variation used by Chris Meuli on his windblown New Mexico land was built by lashing a line-level tool to the horizontal cross stake of the A-frame instead of using a weighted string. If you construct this type of A-frame, you’ll need a line level, a straight cross stake, and a level place to build the device. With both feet of the “A” on level ground, secure the cross brace so the line level’s bubble is right in the middle of the cross brace reading “level.”

Fig. A2.14. Chris Meuli’s line-level A-frame. A bubble level tool is lashed to horizontal bar below Chris’ toes. Chris bolts his A-frame together with wing nuts so he can disassemble and fold it up for easy storage. His A-frame is only as tall as his waist, which allows him to use the tool under the branches of trees.